Electronic structure tailoring and selective adsorption mechanism of metal-coated nanotubes.
نویسندگان
چکیده
Effects of various metal coating (Co, Ti, Pd, W, and Ru) on electronic structures of carbon nanotubes are systematically studied by both ab initio calculations and field-emission experiments. The theoretical results indicate that the adsorption of metal atoms leads to substantial changes in the band structures and work functions of nanotubes. In particular, titanium is found to be the most effective coating material for the application of nanotubes to the field emission display, by lowering the work function and increasing the local density of states near the Fermi level. This is confirmed by the field-emission experiments using Ti-coated nanotubes, which shows enhanced emission performances. In addition, it is found that the Ti coating extends the lifetime of the nanotube substantially. Through the thermogravimetric analysis and theoretical modeling, we propose that this is related to the role of metal coating as a protection layer against residual gases such as oxygen, which cause the degradation of nanotubes. The applications of metal-coated nanotubes to other types of electronic devices are also discussed.
منابع مشابه
Coverage and strain dependent magnetization of titanium-coated carbon nanotubes
First-principles, spin-relaxed pseudopotential plane wave calculations show that Ti atoms can form a continuous coating of carbon nanotubes at different amounts of coverage. Fully relaxed geometry has a complex but regular atomic structure. The semiconducting tube becomes ferromagnetic metal with high quantum conductance. However, the magnetic properties of Ticoated tubes depend strongly on the...
متن کاملSynthesis of 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles for adsorption of Hg(II) ions from an aqueous solution
Background: The rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. The current study prepared DNPH@SDS@Fe3O4 nanoparticles as a novel and effective adsorbent for removal of Hg(II) ions from an aqueous solution. Methods: A selective adsorben...
متن کاملCarbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities
Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of p...
متن کاملSulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study
Density-functional theory is used to investigate sulfur dioxide physisorption inside and outside of single-wall carbon nanotube of (5,0) and (5,5). This study is conducted at B3LYP/6-31G* level of theory. Sulfur dioxide molecule is studied with axis oriented parallel or perpendicular to the nanotube wall. Both internal and external adsorption on nanotubes is increased with the angle of interact...
متن کاملFabrication of mesoporous silica-coated CNTs and application in size-selective protein separation†
In this study, we report a simple method to coat mesoporous silica onto carbon nanotubes (CNTs) via a two-step procedure. Mesoporous CNTs@SiO2 composites have been obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure after silica-coated carbon nanotubes were synthesized with the aid of the cationic surfactant CTAB. The coating process was explicitly investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2008